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1. INTRODUCTION

There has been much interest in recent years in approximating functions by
polynomials which are subject to certain constraints. Included are the
problems of monotone approximation [1, 3, 5, 7, 11], comonotone approxi­
mation [4-6, 8], restricted range approximation [9, 10, 12-14], and others. In
this paper we consider a new type of restriction.

Let Pn be the set of all algebraic polynomials of degree ~ n. LetfE C[-l, 1]
and let En(f) = inf{llf - p II : pEPn} (sup norm on [-1,1]). En(f) is called
the degree of approximation of f Jackson's Theorem [2, p. 65] states that
there exists a constant CI > 0 such that En(f) ~Clw(f; lin), where w is the
modulus of continuity off If we restrict the approximating polynomials
some way, then we arrive at a problem of constrained approximation. For
example, let f E C[-1, 1] be a function having a finite number of local
extrema. Such a function is said to be piecewise monotone. The local extrema
are called the peaks off Two functions are said to be comonotone on [-I, 1]
if they increase and decrease simultaneously on [-1, 1]. Let

En*(f) = inf{llf - p II : pEPn ,p comonotone with f}.

En*(f) is called the degree of comonotone approximation off
Estimates on En*(f) have been obtained by Passow, Raymon, and Roulier

[6] and by Passow and Raymon [5], but they fall short of the Jackson estimate.
Newman, Passow, and Raymon [4] have obtained results of a modified
nature, as follows.

DEFINITION. Let! be piecewise monotone on [-1, 1] with peaks at
-1 = Xl < X 2 < ... < X m = 1. Let Ll = !mini (Xi+l - Xi)' A sequence
polynomials {Pn} is said to be nearly comonotone with! on [-1, 1], if, for
every E satisfying 0 < E < Ll, Pn is comonotone with! on [Xi + E, Xi+l - f],
i = 1,2,... , m - 1, for n sufficiently large.
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DEFINITION. A piecewise monotone function f will be called proper
piecewise monotone if it satisfies the following: for any E > 0 and two succes­
sive peaks Xi , XHI off there exists 8 > 0 such that

Ij(x) - j(y) I~ 8
X-Y

for all X, y in [Xi + E, Xi+! - E], X =1= y.

(1)

LEMMA [4, p. 471]. Let f be a proper piecewise monotone function on
[-1, 1] such that f E LipM 1; i.e., m(f; 8) :::;; M8. Then there is a sequence
{Pn}, Pn E Pn , nearly comonotone with f, such that

Other results on nearly comonotone approximation have been obtained
by Roulier [l1J, who showed, in particular, that if fE CI[-I, 1] then the
sequence of best approximations to f is nearly comonotone withf

2. COPOSITIVE ApPROXIMATION

fandg are said to be copositive on [-1,1] ifj(x) g(x) ~ ofor all X E [-1,1].
Let fE C[-1, 1J and let En(f) -'--- inf{llf - p II : p EPn , p copositive with
f}. EnC!) is called the degree of copositive approximation off

THEOREM 1. Let fE C[-I, 1] be a proper piecewise monotone function,
such that fE LiPM1. Let f have peaks at -1 = Xl < X2 < .. , < XI' = 1,
and suppose that j(Xi) =1= 0, i = 1,2,... , k. Then En(f) :::;; dm(f; lin) :::;; dMln,
where d depends on f but not on n.

Proof Let Yo < YI < ... < YI be the zeros off in [-1, 1]. We assume,
without loss of generality, that M = 1. Let

By the lemma, for n sufficiently large, there exists pEPn such that

(i) pis comonotone withf on [Xj + m, XHI - m],j = 1,2,... , k - 1;
(ii) Ilf - p II :::;; C21n :::;; m.

On I; = [x;-m, X; + m], m ~ Ij(xj )- j(X)I ~ Ij(xj)I-1 j(x)1 ~ 4m -lj(x)l.
Therefore, I j(x)1 ~ 3m on I j • Since Ij(x) - p(x)1 :::;; m, we have

Ip(x) I ~ 2m > 0 on I j •
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by (ii) and the fact that .rE Lipl L

Thus p(x) =f 0 for x E Ij ,j = 0, 1,... , k, so that p has exactly 1+ 1 zeros in
[-1,1], denoted by Yo*, Yl*"'" YI*' where Yi and Yi* are in the same interval
(Xj + m, XjH - m). p is thus a "nearly copositive" approximation to f We
now perturb p to obtain the desired polynomial.

Let 8 = 8(m) in the definition of a proper piecewise monotone function
Thus, If(Yi*) - f(Yi)1 ~ 81 Yi* - Yi I, i = 0,1, ... , I, so that

I y.;* - Yi I ~ (1/8)1 f( Yi*) - f( Yi)1 = (1/8)1 f( Yi*) -pC Yi*)1 ~ Cz/Sn,

by the lemma.
Let HtCx) = n~~O;j,6i (x - Yj)/( Yi - Yj), and let q(x) = L:~o Yi*Hi(x).

q E PI is thus the Lagrange interpolating polynomial satisfying

q(Yi) = Yi*, i = 0, 1, ... , I.

Now q(x) = L~~o (Yi + Ei) Hi(x), where i Ei I ~ Cz/on, from (2). Thus
t I i

q(x) = Li=O YiHtCx) + Li~O EiHi(X) = X + Li~O EiHi(X). Hence,

where Cl depends on Yo , Y1 ,... , YI .
Also, q'(x) = 1 + L~~o EiH/(X). Therefore, q'(x);?: 1 - L~~o I EiN;

~ 1 - bdn on [-1, 1]. Hence q'(x) > 0 for n sufficiently large. Thus, for n
sufficiently large, q is a monotone approximation to x which satisfies
q(Yi) = Yi*' i = 0, 1,... , I. Now let sex) =p(q(x)). Then S E Pni and
s( Yi) = p(q( Yi)) = p( Yi*)' by (3). Thus s( Yi) = 0, i = 0, 1, ... , I, and s has
no other zeros in [-1, 1]. Hence s is copositive withf

Also, s'(x) = p'(q(x)) q'(x), so that sgn s'(x) = sgnp'(q(x)). Thus s is
nearly comonotone with f

Finally,

II! - s II = II! - p(q)l! ~ II! - p II + II P - p(q)ll.

Now, II! - p II ~ Cz/n by (ii). Also,

i p(x) - p(q(x))1 ~ w(p; I x - q(x)1) ~ w(p; Cd8n), by (4).

Now w(p; h) = SUPlx_yl<;;h I p(x) - p( y)1 ~ SUPlx_yl<;;h [I p(x) ­
I f(x) - f( Y)! + If( y) - p( y)[].

Thus,

w(p; h) ~ 2C2/n + h,

Therefore, from (5)-(7),

il! - s II ~ C2/n + 2C2/n + Cdon = Adn.

Hence Enlf) ~ Adn, so that En(f) ~ d/n, where d depends uponf
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3. BEST COPOSITIVE ApPROXIMATION

In this section we prove that a best nth degree copositive approximation to
a continuous function is unique.

Let u and 1 be defined on [-1, 1], with l(x) ~ u(x), and let En(f; u, 1) =
inf{111 - p II : pEPn , l(x) ~ p(x) ~ u(x) for all x E [-1, I]} be the degree
of restricted range approximation off, relative to u and 1. Approximation of
this type has been considered by Taylor [12-14], Schumaker and Taylor [10],
and Roulier and Taylor [9]. In [10] it was shown that the best nth degree
restricted range approximation is unique iffE C[-1, 1] and

l(x) ~ f(x) ~ u(x) for all x in [-1, 1].

We will show that copositive approximation can be viewed as a special case
of restricted range approximation, through an appropriate choice of u and 1.

THEOREM 2. Let f E C[-1, 1]. Then the best nth degree copositive approxi­
mation to f is unique.

Proof Iff has an infinitive number of sign changes then the only poly­
nomial copositive withfis the zero polynomial, and, hence, the best copositive
approximation is unique. We assume, therefore, thatfhas a finite number of
sign changes.

Without loss of generality, 11111 ~ t. Thus ifP is an nth degree polynomial
of best copositive approximation tof on [-1, 1], then II p II ~ 1.

We now split [-1, 1] into three types of subintervals:

Type I: fa, b], where

(i) f(x);? 0 for all x E fa, b];
(ii) f(x) c/= 0 on any subinterval of fa, b];

(iii) f(a) = feb) = 0 (unless a = -lor b = 1);
(iv) there is no subinterval properly containing fa, b] with properties

(i)-(iii).

Type II: [e, d], where

(i') f(x) ~ 0 for all x E fe, d];
(ii') f(x) c/= 0 on any subinterval of fe, d];

(iii') f(c) = fed) = 0 (unless c = -lor d = 1);
(iv') there is no subinterval properly containing fe, d] with properties

(i ')-(iii').

Type III: [e, g], where f(x) = 0 on fe, g], but not on any subinterval properly
containing [e,g].

We consider two cases.
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Case 1. There are no subintervals of Type III; i.e., f does not vanish on
any subinterval of [-1, 1].

Let u and 1 be defined on [-1, 1] as follows:
On an interval [a, b] of Type I, let

u(x) = lmaX(f(x), 2n~(x - a»,
max(f(x), -2n~(x - b»,

and l(x) = 0, X E [a, b].
On an interval [e, d] of Type II, let

X E [a, (a + b)/2],
x E «a + b)/2, b],

u(x) = 0, X E [e, d]

and

lex) = lmin(f(x), -2n~(x - c»,
!min(f(x), 2n~(x - d»,

X E [e, (e + d)/2],
x E «e + d)/2, d].

(If a = -1, let u(x) = max(f(x), -2n~(x - b», x E [-1, b]. Similar
modifications of u are necessary if b = 1, and of 1 if e = -lor d = 1.)

Let p be any nth degree polynomial such that II p II ~ 1. Then II p' II ~ n~, by
the Markov estimate on p' [2, p. 40]. Thus, by our choice of u and 1, p is
copositive with f if and only if 1(x) ~ p(x) ~ u(x) for all x E [-1, 1].
Hence, p is a best copositive approximation to f if and only if p is a best
restricted range approximation to f, relative to u and 1. But the latter is
unique, by [10], and thus the theorem is proved in this case.

Case 2. There are intervals of Type III.
We must now modify our definition of u and L Let [e, g] be a subinterval

of Type III. Let [ex, ,8] be the largest subinterval of [-1, 1] containing [e, g]
and intervals of Types I and III exclusively. Let [y, 0] be the largest sub~

interval of [-1, 1] containing fe, g] and intervals of Types II and m:
exclusively. Define

and

u(x) = lmax(f(x), 2n~(x - ex»,
!max(f(x), -2n~(x - ,8»,

lex) - lmin(f(x), -2n~(x - y»,
- min(f(x), 2n~(x - 0»,

X E [ex, (ex + ,8)/2],
x E «ex + ,8)/2, ,8]

X E [y, (y + 0)/2],
x E «y + 0)/2, 0].

On the remaining subintervals of Types I and II, u and 1 are defined as in
Case 1. With these modifications the proof is completed as in the previous
case.
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Note added in proof Theorem 1 can be extended to functions which do not belong to
LipM1 for any M. By the usual method of preapproximating fby piecewise linear functions,
copositive and comonotone with f [cf. R. P. Feinerman and D. J. Newman, "Polynomial
Approximation," Williams and Wilkins, Baltimore, 1974, p. 38], we obtain the following
estimates of En(!):

THEOREM 1'. Let f E C[-1, 1] be a proper piecewise monotone function, with peaks
at -1 = Xl < Xz < ... < Xk = 1, and suppose that I(Xi) # 0, i = 1,2,..., k. Then En(!) =

dlw(f; lin), where dl is independent of n.
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