Copositive Polynomial Approximation

ELI PASSOW AND LOUIS RAYMON

Mathematics Department, Temple University, Philadelphia, Pennsylvania 19122 Communicated by Oved Shisha

1. INTRODUCTION

There has been much interest in recent years in approximating functions by polynomials which are subject to certain constraints. Included are the problems of monotone approximation [1, 3, 5, 7, 11], comonotone approximation [4–6, 8], restricted range approximation [9, 10, 12–14], and others. In this paper we consider a new type of restriction.

Let P_n be the set of all algebraic polynomials of degree $\leq n$. Let $f \in C[-1, 1]$ and let $E_n(f) = \inf\{||f - p|| : p \in P_n\}$ (sup norm on [-1, 1]). $E_n(f)$ is called the *degree of approximation* of f. Jackson's Theorem [2, p. 65] states that there exists a constant $C_1 > 0$ such that $E_n(f) \leq C_1 \omega(f; 1/n)$, where ω is the modulus of continuity of f. If we restrict the approximating polynomials in some way, then we arrive at a problem of constrained approximation. For example, let $f \in C[-1, 1]$ be a function having a finite number of local extrema. Such a function is said to be *piecewise monotone*. The local extrema are called the *peaks* of f. Two functions are said to be *comonotone* on [-1, 1]if they increase and decrease simultaneously on [-1, 1]. Let

 $E_n^*(f) = \inf\{||f - p|| : p \in P_n, p \text{ comonotone with } f\}.$

 $E_n^*(f)$ is called the *degree of comonotone approximation* of f.

Estimates on $E_n^*(f)$ have been obtained by Passow, Raymon, and Roulier [6] and by Passow and Raymon [5], but they fall short of the Jackson estimate. Newman, Passow, and Raymon [4] have obtained results of a modified nature, as follows.

DEFINITION. Let f be piecewise monotone on [-1, 1] with peaks at $-1 = x_1 < x_2 < \cdots < x_m = 1$. Let $\Delta = \frac{1}{2}\min_i (x_{i+1} - x_i)$. A sequence of polynomials $\{p_n\}$ is said to be *nearly comonotone* with f on [-1, 1], if, for every ϵ satisfying $0 < \epsilon < \Delta$, p_n is comonotone with f on $[x_i + \epsilon, x_{i+1} - \epsilon]$, i = 1, 2, ..., m - 1, for n sufficiently large.

DEFINITION. A piecewise monotone function f will be called *proper* piecewise monotone if it satisfies the following: for any $\epsilon > 0$ and two successive peaks x_i , x_{i+1} of f there exists $\delta > 0$ such that

$$\left|\frac{f(x) - f(y)}{x - y}\right| \ge \delta \tag{1}$$

for all x, y in $[x_i + \epsilon, x_{i+1} - \epsilon], x \neq y$.

LEMMA [4, p. 471]. Let f be a proper piecewise monotone function on [-1, 1] such that $f \in Lip_M 1$; i.e., $\omega(f; \delta) \leq M\delta$. Then there is a sequence $\{p_n\}, p_n \in P_n$, nearly comonotone with f, such that

$$||f-p_n|| \leq C_2 \omega(f; 1/n) \leq C_2 M/n.$$

Other results on nearly comonotone approximation have been obtained by Roulier [11], who showed, in particular, that if $f \in C^1[-1, 1]$ then the sequence of best approximations to f is nearly comonotone with f.

2. COPOSITIVE APPROXIMATION

f and g are said to be copositive on [-1, 1] if $f(x) g(x) \ge 0$ for all $x \in [-1, 1]$. Let $f \in C[-1, 1]$ and let $\overline{E}_n(f) = \inf\{||f - p|| : p \in P_n, p \text{ copositive with } f\}$. $\overline{E}_n(f)$ is called the *degree of copositive approximation* of f.

THEOREM 1. Let $f \in C[-1, 1]$ be a proper piecewise monotone function, such that $f \in Lip_M 1$. Let f have peaks at $-1 = x_1 < x_2 < \cdots < x_k = 1$, and suppose that $f(x_i) \neq 0$, $i = 1, 2, \dots, k$. Then $\overline{E}_n(f) \leq d\omega(f; 1/n) \leq dM/n$, where d depends on f but not on n.

Proof. Let $y_0 < y_1 < \cdots < y_l$ be the zeros of f in [-1, 1]. We assume, without loss of generality, that M = 1. Let

$$m = \frac{1}{4} \min\{\min_{j} | f(x_j)|, \min_{j} (x_{j+1} - x_j), \min_{i,j} | y_i - x_j |\}.$$

By the lemma, for *n* sufficiently large, there exists $p \in P_n$ such that

(i) *p* is comonotone with *f* on $[x_j + m, x_{j+1} - m], j = 1, 2, ..., k - 1;$

(ii) $||f-p|| \leq C_2/n \leq m$.

On $I_j = [x_j - m, x_j + m], m \ge |f(x_j) - f(x)| \ge |f(x_j)| - |f(x)| \ge 4m - |f(x)|$. Therefore, $|f(x)| \ge 3m$ on I_j . Since $|f(x) - p(x)| \le m$, we have

$$|p(x)| \ge 2m > 0$$
 on I_j .

Thus $p(x) \neq 0$ for $x \in I_j$, j = 0, 1, ..., k, so that p has exactly l + 1 zeros in [-1, 1], denoted by $y_0^*, y_1^*, ..., y_l^*$, where y_i and y_i^* are in the same interval $(x_j + m, x_{j+1} - m)$. p is thus a "nearly copositive" approximation to f. We now perturb p to obtain the desired polynomial.

Let $\delta = \delta(m)$ in the definition of a proper piecewise monotone function (1). Thus, $|f(y_i^*) - f(y_i)| \ge \delta |y_i^* - y_i|$, i = 0, 1, ..., l, so that

$$|y_i^* - y_i| \leq (1/\delta) |f(y_i^*) - f(y_i)| = (1/\delta) |f(y_i^*) - p(y_i^*)| \leq C_2/\delta n, \quad (2)$$

by the lemma.

Let $H_i(x) = \prod_{j=0; j \neq i}^{l} (x - y_j)/(y_i - y_j)$, and let $q(x) = \sum_{i=0}^{l} y_i^* H_i(x)$. $q \in P_i$ is thus the Lagrange interpolating polynomial satisfying

$$q(y_i) = y_i^*, \quad i = 0, 1, ..., l.$$
 (3)

Now $q(x) = \sum_{i=0}^{l} (y_i + \epsilon_i) H_i(x)$, where $|\epsilon_i| \leq C_2/\delta n$, from (2). Thus $q(x) = \sum_{i=0}^{l} y_i H_i(x) + \sum_{i=0}^{l} \epsilon_i H_i(x) = x + \sum_{i=0}^{l} \epsilon_i H_i(x)$. Hence,

$$\max_{-1 \leqslant x \leqslant 1} |q(x) - x| \leqslant (C_2/\delta n) \sum_{i=0}^l |H_i(x)| \leqslant (C_l/\delta n),$$
(4)

where C_i depends on y_0 , y_1 ,..., y_i .

Also, $q'(x) = 1 + \sum_{i=0}^{l} \epsilon_i H_i'(x)$. Therefore, $q'(x) \ge 1 - \sum_{i=0}^{l} |\epsilon_i H_i'(x)| \ge 1 - b_l/n$ on [-1, 1]. Hence q'(x) > 0 for *n* sufficiently large. Thus, for *n* sufficiently large, *q* is a monotone approximation to *x* which satisfies $q(y_i) = y_i^*$, i = 0, 1, ..., l. Now let s(x) = p(q(x)). Then $s \in P_{nl}$ and $s(y_i) = p(q(y_i)) = p(y_i^*)$, by (3). Thus $s(y_i) = 0, i = 0, 1, ..., l$, and *s* has no other zeros in [-1, 1]. Hence *s* is copositive with *f*.

Also, s'(x) = p'(q(x)) q'(x), so that $\operatorname{sgn} s'(x) = \operatorname{sgn} p'(q(x))$. Thus s is nearly comonotone with f.

Finally,

$$||f - s|| = ||f - p(q)|| \le ||f - p|| + ||p - p(q)||.$$
(5)

Now, $||f - p|| \leq C_2/n$ by (ii). Also,

$$|p(x) - p(q(x))| \leq \omega(p; |x - q(x)|) \leq \omega(p; C_l/\delta n), \text{ by (4)}.$$
(6)

Now $\omega(p; h) = \sup_{|x-y| \leq h} |p(x) - p(y)| \leq \sup_{|x-y| \leq h} [|p(x) - f(x)| + |f(x) - f(y)| + |f(y) - p(y)|].$

Thus,

 $\omega(p; h) \leq 2C_2/n + h$, by (ii) and the fact that $f \in \text{Lip}_1 1$. (7) Therefore, from (5)–(7),

$$||f - s|| \leq C_2/n + 2C_2/n + C_1/\delta n = A_1/n.$$

Hence $\overline{E}_{nl}(f) \leq A_l/n$, so that $\overline{E}_n(f) \leq d/n$, where d depends upon f.

PASSOW AND RAYMON

3. Best Copositive Approximation

In this section we prove that a best *n*th degree copositive approximation to a continuous function is unique.

Let u and 1 be defined on [-1, 1], with $1(x) \le u(x)$, and let $E_n(f; u, 1) = \inf\{||f - p|| : p \in P_n, 1(x) \le p(x) \le u(x) \text{ for all } x \in [-1, 1]\}$ be the *degree* of restricted range approximation of f, relative to u and 1. Approximation of this type has been considered by Taylor [12–14], Schumaker and Taylor [10], and Roulier and Taylor [9]. In [10] it was shown that the best *n*th degree restricted range approximation is unique if $f \in C[-1, 1]$ and

 $1(x) \leq f(x) \leq u(x)$ for all x in [-1, 1].

We will show that copositive approximation can be viewed as a special case of restricted range approximation, through an appropriate choice of u and 1.

THEOREM 2. Let $f \in C[-1, 1]$. Then the best nth degree copositive approximation to f is unique.

Proof. If f has an infinitive number of sign changes then the only polynomial copositive with f is the zero polynomial, and, hence, the best copositive approximation is unique. We assume, therefore, that f has a finite number of sign changes.

Without loss of generality, $||f|| \leq \frac{1}{2}$. Thus if p is an nth degree polynomial of best copositive approximation to f on [-1, 1], then $||p|| \leq 1$.

We now split [-1, 1] into three types of subintervals:

Type I: [a, b], where

(i) $f(x) \ge 0$ for all $x \in [a, b]$;

(ii) $f(x) \neq 0$ on any subinterval of [a, b];

(iii) f(a) = f(b) = 0 (unless a = -1 or b = 1);

(iv) there is no subinterval properly containing [a, b] with properties (i)-(iii).

Type II: [c, d], where

(i') $f(x) \leq 0$ for all $x \in [c, d]$;

(ii') $f(x) \neq 0$ on any subinterval of [c, d];

(iii') f(c) = f(d) = 0 (unless c = -1 or d = 1);

(iv') there is no subinterval properly containing [c, d] with properties (i')-(iii').

Type III: [e, g], where f(x) = 0 on [e, g], but not on any subinterval properly containing [e,g].

We consider two cases.

Case 1. There are no subintervals of Type III; i.e., f does not vanish on any subinterval of [-1, 1].

Let u and 1 be defined on [-1, 1] as follows:

On an interval [a, b] of Type I, let

$$u(x) = \begin{cases} \max(f(x), 2n^2(x-a)), & x \in [a, (a+b)/2], \\ \max(f(x), -2n^2(x-b)), & x \in ((a+b)/2, b], \end{cases}$$

and $1(x) = 0, x \in [a, b]$.

On an interval [c, d] of Type II, let

$$u(x)=0, \qquad x\in [c,d]$$

and

$$l(x) = \begin{cases} \min(f(x), -2n^2(x-c)), & x \in [c, (c+d)/2], \\ \min(f(x), 2n^2(x-d)), & x \in ((c+d)/2, d]. \end{cases}$$

(If a = -1, let $u(x) = \max(f(x), -2n^2(x-b))$, $x \in [-1, b]$. Similar modifications of u are necessary if b = 1, and of 1 if c = -1 or d = 1.)

Let p be any nth degree polynomial such that $||p|| \leq 1$. Then $||p'|| \leq n^2$, by the Markov estimate on p' [2, p. 40]. Thus, by our choice of u and 1, p is copositive with f if and only if $1(x) \leq p(x) \leq u(x)$ for all $x \in [-1, 1]$. Hence, p is a best copositive approximation to f if and only if p is a best restricted range approximation to f, relative to u and 1. But the latter is unique, by [10], and thus the theorem is proved in this case.

Case 2. There are intervals of Type III.

We must now modify our definition of u and 1. Let [e, g] be a subinterval of Type III. Let $[\alpha, \beta]$ be the largest subinterval of [-1, 1] containing [e, g]and intervals of Types I and III exclusively. Let $[\gamma, \delta]$ be the largest subinterval of [-1, 1] containing [e, g] and intervals of Types II and III exclusively. Define

$$u(x) = \begin{cases} \max(f(x), 2n^2(x-\alpha)), & x \in [\alpha, (\alpha+\beta)/2], \\ \max(f(x), -2n^2(x-\beta)), & x \in ((\alpha+\beta)/2, \beta] \end{cases}$$

and

$$l(x) = \begin{cases} \min(f(x), -2n^2(x-\gamma)), & x \in [\gamma, (\gamma+\delta)/2], \\ \min(f(x), 2n^2(x-\delta)), & x \in ((\gamma+\delta)/2, \delta]. \end{cases}$$

On the remaining subintervals of Types I and II, u and 1 are defined as in Case 1. With these modifications the proof is completed as in the previous case.

PASSOW AND RAYMON

Note added in proof. Theorem 1 can be extended to functions which do not belong to $\text{Lip}_M 1$ for any M. By the usual method of preapproximating f by piecewise linear functions, copositive and comonotone with f [cf. R. P. Feinerman and D. J. Newman, "Polynomial Approximation," Williams and Wilkins, Baltimore, 1974, p. 38], we obtain the following estimates of $\vec{E_n}(f)$:

THEOREM 1'. Let $f \in C[-1, 1]$ be a proper piecewise monotone function, with peaks at $-1 = x_1 < x_2 < \cdots < x_k = 1$, and suppose that $f(x_i) \neq 0$, $i = 1, 2, \dots, k$. Then $\overline{E}_n(f) = d_1\omega(f; 1/n)$, where d_1 is independent of n.

References

- 1. K. LIM, Note on monotone approximation, Bull. London Math. Soc. 3 (1971), 366-368.
- 2. G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart and Winston, New York, 1966.
- G. G. LORENTZ AND K. L. ZELLER, Degree of approximation by monotone polynomials, I, J. Approximation Theory 1 (1968), 501–504.
- D. J. NEWMAN, E. PASSOW, AND L. RAYMON, Piecewise monotone polynomial approximation, *Trans. Amer. Math. Soc.* 172 (1972), 465–472.
- E. PASSOW AND L. RAYMON, Monotone and comonotone approximation, Proc. Amer. Math. Soc., 42 (1974), 390–394.
- E. PASSOW, L. RAYMON, AND J. A. ROULIER, Comonotone polynomial approximation, J. Approximation Theory, 11 (1974), 221-224.
- 7. J. A. ROULIER, Monotone approximation to certain classes of functions, J. Approximation Theory 1 (1968), 319-324.
- 8. J. A. ROULIER, Nearly comonotone approximation Proc. Amer. Math. Soc. (to appear).
- 9. J. A. ROULIER AND G. D. TAYLOR, Approximation by polynomials with restricted ranges of their derivatives, J. Approximation Theory 5 (1972), 216–227.
- 10. L. L. SCHUMAKER AND G. D. TAYLOR, On approximations by polynomials having restricted ranges, II, SIAM J. Numer. Anal. 6 (1969), 31-36.
- 11. O. SHISHA, Monotone approximation, Pacific J. Math. 15 (1965), 667-671.
- 12. G. D. TAYLOR, On approximations by polynomials having restricted ranges, I, SIAM J. Numer. Anal. 5 (1968), 258-268.
- 13. G. D. TAYLOR, Approximation by functions having restricted ranges, III, J. Math. Anal. Appl. 27 (1969), 241-248.
- 14. G. D. TAYLOR, Approximation by functions having restricted ranges: Equality case, *Numer. Math.* 14 (1969), 71–78.

304